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SUMMARY

A 3D semi-implicit ®nite volume scheme for shallow-water ¯ow with the hydrostatic pressure assumption has
been developed using the s-co-ordinate system, incorporating a standard k±e turbulence transport model and
variable density solute transport with the Boussinesq approximation for the resulting horizontal pressure
gradients. The mesh spacing in the vertical direction varies parabolically to give ®ne resolution near the bed and
free surface to resolve high gradients of velocity, k and e. In this study, wall functions are used at the bed (de®ned
by the bed roughness) and wind stress at the surface is not considered. Surface elevation gradient terms and
vertical diffusion terms are handled implicitly and horizontal diffusion and source terms explicitly, including the
Boussinesq pressure gradient term due to the horizontal density gradient. The advection terms are handled in
explicit (conservative) form using linear upwind interpolation giving second-order accuracy. A fully coupled
solution for the ¯ow ®eld is obtained by substituting for velocity in the depth-integrated continuity equation and
solving for surface elevation using a conjugate gradient equation solver. Evaluation of horizontal gradients in the
s-co-ordinate system requires high-order derivatives which can cause spurious ¯ows and this is avoided by
obtaining these gradients in real space. In this paper the method is applied to parallel oscillatory (tidal) ¯ow in
deep and shallow water and compared with ®eld measurements. It is then applied to current ¯ow about a conical
island of small side slope where vortex shedding occurs and velocities are compared with data from the
laboratory. Computed concentration distributions are also compared with dye visualization and an example of the
in¯uence of temperature on plume dispersion is presented. # 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computational schemes for the simulation of the shallow-water equations in depth-averaged form

have been widely used since the pioneering work of Leendertse.1 Since then a wide variety of

schemes have been produced encompassing much of what is generally available in computational

¯uid dynamics (CFD): ®nite difference, ®nite volume and ®nite element methods for spatial

discretization; explicit and implicit time stepping; alternating direction implicit (ADI), multigrid and
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conjugate gradient equation solving; non-conservative and conservative equation choice. Turbulence

modelling has been limited to the eddy viscosity approach, with either a simple empirical formula

(constant or proportional to friction velocity and depth) or k±l transport modelling, where k is the

turbulent kinetic energy and l is its length scale, given by a simple algebraic formula. Rectangular and

boundary-®tted meshes have been applied, although in this context the latter does not imply dynamic

meshing, ®tting the moving wet=dry boundaries; rather a ®xed mesh is set up which covers the

maximum extent of wetted area. This is intended to improve computational ef®ciency and reduce

storage requirements.

In this paper we are concerned with the 3D shallow-water equations and solute transport which

have become a practical computing possibility over the last few years with increasing computing

power and storage. Hydrostatic pressure is assumed with the implication that horizontal pressure

gradients are independent of depth below the surface. Thus separation in a vertical plane cannot be

reproduced generally which can be a signi®cant limitation with recirculating ¯ows even for gently

sloping bathymetries,2 but this matter will not be addressed here. Various multiple-level models have

been developed in real (Cartesian) space where friction is speci®ed at a layer interface and simple

formulae for eddy viscosity are used, e.g. those of Kawahara et al.3 and Lynch and Werner.4 A

similar approach, only using a vertically coupled ®nite difference scheme, has been adopted by Lin

and Falconer5 using the ADI approach and Casulli and Cheng6 using Lagrangian advection. Other

schemes have been formulated with equations in s-co-ordinate form in the vertical (®tted to the bed

and water surface) following the practice in atmospheric aerodynamics (after Phillips7). The ADI

scheme has been applied in 3D by Uittenbogaard et al.8 and the Casulli and Cheng scheme has been

set up in s-co-ordinates by Stansby and Lloyd.9 Both the latter are semi-implicit and fully coupled in

orthogonal horizontal directions using conjugate gradient equation solving. Eddy viscosity turbulence

modelling of mixing length form has been applied in the references above (apart from Reference 8

which has various options including k±l modelling). Use of mixing length and k±l models has been

assessed by Davies and Jones10 for equations in linearized form appropriate for some tidal

computations. Use of a more complete approach with transport equations for k and e, the turbulence

energy dissipation rate, has yet to be applied in this context to the author's knowledge. It should also

be pointed out that in other areas of engineering, notably aeronautical, more advanced anisotropic

turbulence modelling is being employed: non-linear k±e modelling (e.g. Reference 11) and full

Reynolds stress transport modelling, albeit at substantial computational expense for the latter.

However, these ¯ows do not have the complication of a moving free surface with wetting and drying

of cells. The level of turbulence modelling required or desirable for a particular application is a rather

open question, depending for example on whether broad ¯ow features are required or detailed long-

term concentration distributions. However, it can be said that a simple mixing length model produced

good general ¯ow predictions including recirculations in steady ambient ¯ows around islands,2,9

while for oscillatory ambient ¯ows more complex turbulence structures occur which are bound to be

signi®cant for solute dispersion and a higher level of turbulence model is desirable. The k±e model

has been suggested as the minimum level for the related problem of oscillatory boundary layer ¯ow

over a ¯at bed due to surface waves.12 In this paper the aim is to incorporate the standard k±e
turbulence model with wall functions (e.g. Reference 13) into a 3D shallow-water scheme in the

knowledge that extending to non-linear k±e modelling would be straightforward. Rough turbulent

boundary layers are assumed throughout since this usually occurs in practice. The numerical

approach derives from the experience of Stansby and Lloyd.9 All vertical diffusion terms are handled

implicitly and horizontal diffusion and source terms, including the Boussinesq pressure term due to

variable density, explicitly. First-order time stepping is maintained since it will be shown that a much

smaller time step is needed for stability with k±e modelling than with the mixing length turbulence

model. The equations are solved in s-co-ordinate form since we believe it is essential to represent
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accurately regions close to the bed and surface where sharp gradients occur and mesh compression is

now applied. The ®nite volume method is applied with the equations in conservative form.

Inaccuracies do occur in s-co-ordinates through the evaluation of horizontal gradient terms and to

avoid this we compute these in real space following Stelling and van Kester.14 The advection terms

are handled explicitly (in conservative form) with upwind differencing. The velocities thus obtained

from the momentum equations are substituted into the depth-averaged continuity equation and the

resulting equations for surface elevation are solved by a conjugate gradient scheme. All other ¯ow

and scalar quantities may then be obtained to complete a time step.

Finally the scheme is set up with a rectangular horizontal mesh. It is found that most of the

computational effort goes into setting up the elements of the matrix equation for wet cells prior to the

solution for surface elevation and then subsequent to the solution in obtaining required quantities.

The time required for solution itself by the conjugate gradient method is a negligible proportion of a

time step and thus there would be little or no bene®t in a horizontally boundary ®tted mesh with 3D

computations, at least for many con®gurations.

The overall aim of the paper is thus to establish a robust and ef®cient scheme with k±e turbulence

modelling for the 3D equations in conservative form in s-co-ordinates and to demonstrate prediction

capability and computing requirements. To check the method, some 1D vertical computations are

undertaken for uniform oscillatory ¯ow: the turbulent bed boundary layer due to linear surface waves

to compare with the results of Justesen12 and tidal ¯ows in the Jade and Elbe estuaries to compare

with Baumert and Radach15 for which some full-scale ¯ow and turbulence measurements are

available. To test the stability of the 3D scheme with wetting and drying, the island ¯ow of Stansby

and Lloyd9 is recomputed and compared with experimental data. Solute is added to the computation

to compare qualitatively with experimental dye visualizations2 for cases with rather different vortex

shedding. Examples of the in¯uence of non-ambient plume temperature on its dispersion around an

island are also presented.

2. MATHEMATICAL FORMULATION

De®nitions of water surface elevation Z, water depth h and bed elevation z0 are shown in Figure 1.

Starting from the Navier±Stokes and continuity equations and taking mean quantities in an

averaging time dt which is small in relation to the time scales of the large-scale slowly varying

structures of a ¯ow, we obtain the Reynolds equation system. We then accept the Boussinesq

assumption relating the turbulent stresses introduced by the averaging processes to the mean velocity

gradients. The resulting equation set may thus be de®ned as the continuity equation

@u

@x
� @v
@y
� @w
@z
� 0; �1�

Figure 1. De®nition sketch
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the momentum equations for the orthogonal horizontal directions x and y with the total derivative also

expressed in conservative form,
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and in the vertical direction z the pressure p is assumed to be hydrostatic,

1
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where u, v and w are velocities in the directions x, y and z respectively and nE is the turbulent eddy

viscosity (kinematic) de®ned by the turbulence energy k and dissipation rate e such that
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k2

e
: �5�

Here k and e are de®ned by the standard transport equations,13 without accounting for strati®cation

effects, again with the total derivative in conservative form:
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The turbulence production term P is given compactly in tensor notation as

P � nE
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where i� 1, 2, 3 correspond to the co-ordinates x, y and z respectively. Standard values of the

turbulence constants are used: cm� 0�09, c1e� 1�44, c2e� 1�92, sk� 1�0 and se� 1�3.

The diffusion±advection equation for the transport of solute concentration (or temperature) c is

given by
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where sc is the turbulent Schmidt number.

To determine the horizontal pressure gradient terms in (2) and (3), since r� r(x, y, z, t) and solute

is not neutrally buoyant in general, r� r(c(x, y, z, t)). Integrating (4) gives

p�x; y; z; t� �
�Z�x;y;t�

z0�z

gr�x; y; z0; t�dz0: �10�

Applying the Leibniz rule and dropping the independent variables for compactness gives
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where rZ is the density at the surface and there is a corresponding expression for @p=@y. For small

density variations the Boussinesq approximation is valid:

1
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where r0 is a reference density (usually that of fresh water). The ®rst term on the right-hand side will

be treated implicitly and the second term, which is by de®nition small, explicitly.

The equation set is completed by integrating the continuity equation over depth and applying the

kinematic free surface condition and the Leibniz rule again to give the `depth-integrated' continuity

equation
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Standard wall functions are used as boundary conditions at the bed.13 The logarithmic law of the wall

is used to relate the velocity just above the bed to the bed friction velocity u� � �p t0=r�:
um

u�
� 1

k
ln

33�zÿ z0�
ks

� �
; �14�

where t0 is the bed shear stress, um � �p u2 � v2� at a distance z7 z0 above the bed, k is von

Karman's constant, taken to be 0�43, and ks is the roughness height. (We are here concerned only with

rough turbulent boundary layers.) This wall region is valid for 30< z+< 100, where

z� � �zÿ z0�u�=n. In the spatial discretization the ®rst vertical mesh point should thus lie within

this region, which is straightforward to arrange in mainly steady ¯ows but is more problematic in

oscillatory ¯ows and is discussed later. The shear stress within the wall region may be assumed

constant (for a given horizontal location) and for a given vertical position z1 we have

u� �
um1

�1=k� ln�33�z1 ÿ z0�=ks�
: �15�

The shear stress components in the directions x and y, t0x and t0y are resolved as
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where u1 and v1 are the velocities at z1 and

g � um1
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In the wall region the Reynolds stresses are assumed constant and turbulence production equals

dissipation, giving
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At the water surface, without wind stress, there is zero stress, implying @u=@z� @v=@z� 0. For k and e
we impose13
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There is also zero solute ¯ux across the bed and water surface, implying @c=@z� 0. For the accurate

implementation of these boundary conditions the numerical mesh is made to ®t the bed and water

surface by replacing the z-co-ordinate with a s-co-ordinate de®ned by

s � zÿ Z
h

: �21�

In this frame us� u, vs� v, ws�Ds=Dt, ks� k, es� e and cs � c; also we use o� hws which is

related to w through
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The continuity equation becomes (dropping the suf®x s)
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and the total derivatives for u and v in the momentum equations and the scalar quantities k, e and c

have the same form. For example, for u (again dropping the suf®x s),
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The horizontal diffusion and pressure gradient terms involve additional derivative terms in a s-co-

ordinate system which can cause signi®cant errors near steep bed slopes. For example, for p,

@p

@x
� @ps

@xs
� @s
@x

@ps

@s
� @ps

@xs
ÿ 1

h

@Z
@x
� s

@h

@x

� �
@ps

@s
: �25�

We can thus have the sum of two signi®cantly large terms of opposite sign with truncation errors

causing a relatively large error in gradient. A numerical requirement to avoid signi®cant spurious

¯ow has been suggested such that

s
h

@h

@x

���� ���� < ds
dx
; �26�

where dx and ds are mesh spacings.16 In this scheme the problem is particularly signi®cant since the

mesh is compressed near the bed with a very small ds-value. This is avoided by evaluating these

terms in physical (x, y, z) space in a ®nite volume scheme.14 The advective terms on the other hand

are very conveniently obtained in s-co-ordinates by the ®nite volume method since the physical space

maps onto a cuboid in s-space and there are no derivative terms to be evaluated.

In the numerical scheme we compress the s-mesh near the bed and surface symmetrically about

mid-depth to give greater de®nition using the parabolic transformation

dsmesh

ds0mesh

� b�smesh � a��1ÿ smesh � a�; �27�
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where 0 4 smesh 4 1 de®nes the s-mesh and 04s0mesh 4 1 is a uniformly spaced mesh. (Note that

s� smesh 7 1.) Here a and b are algebraically related constants (a<< 1) which determine the degree

of compression together with the number of vertical grid points, where

b � 2

1� 2a
ln 1� 1

a

� �
;

s0mesh �
1

b�1� 2a� ln
smesh � a

a

1� a
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� �
:

�28�

At the bed (and surface) we thus have

ds � dz

h
� ÿ 2a ln�a�

K
;

where K is the number of vertical cells.

3. NUMERICAL DISCRETIZATION

We use the conventional staggered mesh system shown in Figure 2 for the momentum equations to

avoid checkerboard oscillations with cells numbered centrally i, j, k, where i � 1; . . . ; I, j � 1; . . . ; J

and k � 1; . . . ;K, with k� 1 for the bed cell and k�K for the surface cell. The horizontal cell sizes

are dx and dy. At this stage we consider the implicit terms with the explicit terms lumped together in

the operator F which will be de®ned later. Note that for the pressure gradient terms of (12) the surface

elevation term is treated implicitly and the small Boussinesq, density gradient term explicitly.

Although we use the ®nite volume approach, it is convenient to make u and v the subject of the

equations for later substitution. The momentum equations take the discretized form
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where n denotes the time level, dt is the time step, ds0 � 1=K and the subscript E has been omitted

from nE to avoid congestion. In compact matrix±vector form,
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where
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with dsk � sk�1=2 ÿ skÿ1=2. Note s1=2 corresponds to the bed and sK�1=2 to the surface in this

notation. The tridiagonal matrix A has different forms for the directions x and y although omitting the

subcripts (i� 1
2
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a11 � hds1 � gdt � dt

n3=2

ds0

ds

� �
3=2

hds0
;

a12 � ÿdt

n3=2

ds0

ds

� �
3=2

hds0
;

�35a�

for k � 2; . . . ;K ÿ 1,

ak;kÿ1 � ÿdt

nkÿ1=2

ds0

ds

� �
kÿ1=2

hds0
;

ak;k � hdsk � dt

nk�1=2

ds0

ds

� �
k�1=2

hds0
� dt

nkÿ1=2

ds0

ds

� �
kÿ1=2

hds0
; �35b�

ak;k�1 � ÿdt

nk�1=2

ds0

ds

� �
k�1=2

hds0
;

for k�K,

aK;Kÿ1 � ÿdt

nKÿ1=2

ds0

ds

� �
Kÿ1=2

hds0
;

aK;K � hdsK � dt

nKÿ1=2

ds0

ds

� �
Kÿ1=2

hds0
:

�35c�

Substituting into the depth-integrated continuity equation gives
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Substituting for U and V gives
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i; j�1 ÿ Zn�1
i; j �

ÿ �hn
i; jÿ1=2�2DsTAÿ1

i; jÿ1=2Ds�Zn�1
i; j ÿ Zn�1

i; jÿ1��

� Zn
i; j ÿ

dt

dx
�hn

i�1=2; j�DsTAÿ1
i�1=2; jGi�1=2; j�n ÿ hn

iÿ1=2; j�DsTAÿ1
iÿ1=2; jGiÿ1=2; j�n�

ÿ dt

dy
�hn

i; j�1=2�DsTAÿ1
i; j�1=2Gi; j�1=2�n ÿ hn

i; jÿ1=2�DsTAÿ1
i; jÿ1=2Gi; jÿ1=2�n�:

�37�

Here DsTA-1Ds is a positive number. For each point (i, j) we thus have an equation for Zi; j, Zi�1; j,

Zi; j�1, Ziÿ1; j and Zi; jÿ1 giving a ®ve-diagonal equation set. The resulting I6 J equations are solved

ef®ciently using a conjugate gradient solver. Having solved for Z, the velocities u and v are obtained

by solving the tridiagonal equations (31) and (32). The vertical velocity o at the new time level n� 1

may now be simply determined from (23) as

on�1
i; j;k�1=2 � on�1

i; j;kÿ1=2 ÿ ds0
@s
@s0

� �
k

Zn�1
i; j ÿ Zn

i; j

dt

 

� hn�1
i�1=2; ju

n�1
i�1=2; j;k ÿ hn�1

iÿ1=2; ju
n�1
iÿ1=2; j;k

dx
� hn�1

i; j�1=2un�1
i; j�1=2;k ÿ hn�1

i; jÿ1=2un�1
i; jÿ1=2;k

dy

!
: �38�

The vertical velocity in physical space w may also be obtained from a ®nite difference form of (22) if

needed.

The explicit operators Fu and Fv describing advection and horizontal diffusion remain to be

de®ned. Also k and e are needed to specify nE and c to determine r and hence the Boussinesq pressure

gradient terms. k, e and c are advanced in time alongside u, v and Z: nE at time level n is used to

advance u, v and Z to time level n� 1 which then provide the input to advance k, e and c to time level

n� 1. As with u and v, for k, e and c vertical diffusion is handled implicitly and advection, horizontal

diffusion and source terms explicitly, lumped together into operators Fk, Fe and Fc respectively. We

now de®ne their implicit time advancement in terms of Fk, Fe and Fc which will be de®ned later

along with Fu and Fv. k, e are de®ned at vertical mesh points between those for u and v since this is

most convenient for specifying nE for vertical diffusion which is considered a most important process

in this study. c is also speci®ed at the same points for convenience and since values at the bed and

Figure 2. Sketch showing staggered mesh system
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surface are often needed. The numerical treatment of k, e and c is thus the same apart from the source

terms. We arbitrarily choose c to de®ne the implicit component of equations (6), (7) and (9):

cn�1
i; j;k�1=2 � Fcn

i; j;k�1=2

� dt

nn
i; j;k�1

sc

@s0

@s

� �
k�1

�cn�1
i; j;k�3=2 ÿ cn�1

i; j;k�1=2� ÿ
nn

i; j;k

sc

@s0

@s

� �
k

�cn�1
i; j;k�1=2 ÿ cn�1

i; j;kÿ1=2�

ds0�hn
i; j�2�sk�1 ÿ sk�

: �39�

A tridiagonal matrix is formed for each horizontal position (i, j) which is solved to give k, e and c.

The boundary conditions for each are different and the matrix elements alm and the right-hand-side

term bl are now de®ned for c (m � 1; . . . ;K � 1): for m� 1, corresponding to k � 1
2
, we require zero

gradient, given by

a11 � 1; a12 � ÿ1; b1 � 0;

for m � 2; . . . ;K, corresponding to k � 3
2
; . . . ;K ÿ 1

2
,

am;mÿ1 � ÿdt

nk

sc

ds0

ds

� �
k

h2
i; jds0�sk�1 ÿ sk�

;

am;m � 1� dt

nk

sc

ds0

ds

� �
k

h2
i; jds0�sk�1 ÿ sk�

� dt

nk�1

sc

ds0

ds

� �
k�1

h2
i; jds0�sk�1 ÿ sk�

; �40�

am;m�1 � ÿdt

nk�1

sc

ds0

ds

� �
k�1

h2
i; jds0�sk�1 ÿ sk�

; bm � Fck�1=2;

for m�K� 1, corresponding to k � K � 1
2
, we again require zero gradient, given by

aK�1;K � ÿ1; aK�1;K�1 � 1; bK�1 � 0:

For k and e we only require m � 1; . . . ;K, corresponding to k � 3
2
, K � 1

2
, since values on the bed

are not required and wall functions are used to specify magnitudes at k � 3
2
. For m � 2; . . . ;K ÿ 1 the

elements of the tridiagonal matrix are as given by (40).

For k with m� 1 we require from (18)

a11 � 1; a12 � 0; b1 � u2
�= c
p

m:

For m�K without wind shear we have zero gradient, requiring

aK;Kÿ1 � ÿ1; aK;K � 1; bK � 0:

For e with m� 1 we require from (19)

a11 � 1; a12 � 0; b1 � u3
�=khs3=2:

For m�K we require from (20)

aK;Kÿ1 � 0; aK;K � 1; bK � �kK�1=2 c
p

m�3=20�07kh:
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We now de®ne the explicit operators Fu and Fv, starting with the advective components Fua and

Fva. To demonstrate the procedure, Figure 3 shows a cell centred on ui�1=2; j;k and from (24) the

transport quantity f� hu. Fua is thus given by

Fua
i�1=2; j;k � ÿ

dt

hi�1=2; j

uefe ÿ uwfw

dx
� vnfn ÿ vsfs

dy
� ouuu ÿ odud

ds0�@s=@s0�P

� �
; �41�

where ue, uw, vn, vs, ou and od are obtained by linear interpolation, e.g.

ue � �ui�1=2; j;k � ui�3=2; j;k�=2; vn � �vi; j�1=2;k � vi�1; j�1=2;k�=2;
ou � �oi; j;k�1=2 � oi�1; j;k�1=2�=2;

and fe, fw, fn, fs, uu and ud are obtained from some upwind interpolation scheme. Here we use

linear interpolation which is found to have good stability characteristics for this application and is

second-order-accurate. This gives for fe for example

for ue > 0; fe � �3fP ÿ fW�=2; for ue 4 0; fe � �3fE ÿ fEE�=2:
Note also that, to determine f� uh, h is also given by linear interpolation.

There is a corresponding scheme for Fva with f� hv.

The explicit components of Fu and Fv due to the Boussinesq pressure gradient terms Fup and Fvp

and horizontal diffusion terms Fuhd and Fvhd both require horizontal gradients in real space: of c for

the former since r� r(c) and of u and v for the latter. The method of calculation is the same in all

cases. Consider Figure 4 where @c=@x is required for Fu
p
i�1=2; j;k. The horizontal level above datum at

this position is

�1� sk�hi�1=2; j � z0i�1=2; j:

The vertical distance from this level to the bed is required at (i� 1, j) to give c2 and at (i, j) to give c1

so that

@c

@x

� �
i�1=2; j;k

� c2 ÿ c1

dx
:

This vertical distance at (i� 1, j) is

�1� sk�hi�1=2; j � z0i�1=2; j ÿ z0i�1; j;

which is converted to s0 by (28). Putting

s0

ds0
� 1 � n� d;

where n is an integer and 0 4 d< 1, gives by linear interpolation

c2 � ci�1; j;n�1ÿ d� � ci�1; j;n�1d:

Figure 3. Sketch showing notation for advection scheme. The shaded area is the cell centred on ui�1=2; j;k
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c1 is obtained in a similar way. If the position for c1 or c2 is below the bed or above the surface, @c=@x
is obtained by forward or backward differencing using c-values in the water. For example, if the

position of c1 is below the bed,

@c

@x

� �
i�1=2; j;k

� c2 ÿ ci�1=2; j;k

dx=2
:

@c=@y is handled in a similar way.

The simple but effective still water test was made with a horizontal water surface, a sloping bed

and density varying linearly with vertical distance below the surface, giving @c=@x� 0 everywhere.

With a non-linear variation this would not be precisely zero and higher-order interpolation could be

desirable for sharp density variations, however, this is not considered here.

Fup may now be obtained. From (12) we write

I � g

r0

�Z
z0�z

@r
@x

dz0;

which is obtained numerically as

Ik �
ghi�1=2; j

r0

�
@r
@x

�
K

�sK�1=2 ÿ sK� �
1

2

PKÿ1

l�k

@r
@x

� �
l

� @r
@x

�
l�1

� �
�sl�1 ÿ sl�

� �
;

�
giving

Fu
p
i�1=2; j;k � ÿdtIk:

Fuhd may be speci®ed with reference to Figure 5. In a ®nite volume approach the ¯uxes of nE@u=@x
through the vertical east and west cell faces and the ¯uxes of nE@u=@y through the vertical north and

Figure 4. Sketch showing scheme for calculation of horizontal gradient @c=@x

Figure 5. Notation for computation of horizontal diffusion for cell centred on ui�1=2; j;k
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south faces are required and these ¯uxes though the sloping upper and lower faces are also

approximated, giving

Fuhd
i�1=2; j;kdxdydskhi�1=2; j

dt

� nE

@u

@x

� �
i�1; j;k

hi�1; j ÿ nE

@u

@x

� �
i; j;k

hi; j

" #
dskdy

ÿ 1

2
nE

@u

@x

� �
i�1; j;k�1=2

� nE

@u

@x

� �
i; j;k�1=2

" #
sk�1=2�hi�1; j ÿ hi; j�dy

� 1

2
nE

@u

@x

� �
i�1; j;kÿ1=2

� nE

@u

@x

� �
i; j;kÿ1=2

" #
skÿ1=2�hi�1; j ÿ hi; j�dy �42�

� nE

@u

@y

� �
i�1=2; j�1=2;k

hi�1=2; j�1=2 ÿ nE

@u

@y

� �
i�1=2; jÿ1=2;k

hi�1=2; jÿ1=2

" #
dskdx

ÿ 1

2
nE

@u

@y

� �
i�1=2; j�1=2;k�1=2

� nE

@u

@y

� �
i�1=2; jÿ1=2;k�1=2

" #
sk�1=2�hi�1=2; j�1=2 ÿ hi�1=2; jÿ1=2�dx

� 1

2
nE

@u

@y

� �
i�1=2; j�1=2;kÿ1=2

� nE

@u

@y

� �
i�1=2; jÿ1=2;kÿ1=2

" #
skÿ1=2�hi�1=2; j�1=2 ÿ hi�1=2; jÿ1=2�dx:

In, for example, nE@u=@x the suf®ces apply to nE as well as @u=@x for compactness. There is a

corresponding expression for Fv.

The speci®cation of Fu and Fv is now completed as

Fu � u� Fua � Fup � Fuhd; Fv � v� Fva � Fvp � Fvhd:

We de®ne the explicit advective operators Fka, Fea and Fca for the transport quantities f� hk, he
and hc in a similar way to Fua and Fva. Fca is used to demonstrate the procedure for a cell as shown in

Figure 3 but centred on ci; j;k�1=2, giving

Fca
i; j;k�1=2 � ÿ

dt

hi; j

uefe ÿ uwfw

dx
� vnfn ÿ vsfs

dy
� oucu ÿ odcd

ds0�@s=@s0�P

� �
; �43�

where ue, uw, vn, vs, ou and od are obtained by linear interpolation, e.g.

ue � �ui�1=2; j;k � ui�1=2; j;k�1�=2; vn � �vi; j�1=2;k � vi; j�1=2;k�1�=2;
ou � �oi; j;k�1=2 � oi; j;k�3=2=2;

and fe, fw, fn, fs, cu and cd are obtained from the linear upwind interpolation scheme. As before, to

determine f� hc, h is also obtained by linear interpolation.
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Fchd is speci®ed following the same procedure as for Fuhd and Fvhd:

Fchd
i; j;k�1=2dxdydsk�1=2hi; j

dt

� nE

@c

@x

� �
i�1=2; j;k�1=2

hi�1=2; j ÿ nE

@c

@x

� �
iÿ1=2; j;k�1=2

hiÿ1=2; j

" #
dsk�1=2dy

ÿ 1

2
nE

@c

@x

� �
i�1=2; j;k�1

� nE

@c

@x

� �
iÿ1=2; j;k�1

" #
sk�1�hi�1=2; j ÿ hiÿ1=2; j�dy

� 1

2
nE

@c

@x

� �
i�1=2; j;k

� nE

@c

@x

� �
iÿ1=2; j;k

" #
sk�hi�1=2; j ÿ hiÿ1=2; j�dy

� nE

@c

@y

� �
i; j�1=2;k�1=2

hi; j�1=2 ÿ nE

@c

@y

� �
i; jÿ1=2;k�1=2

hi; jÿ1=2

" #
dsk�1=2dx

ÿ 1

2
nE

@c

@y

� �
i; j�1=2;k�1

� nE

@c

@y

� �
i; jÿ1=2;k�1

" #
sk�1�hi; j�1=2 ÿ hi; jÿ1=2�dx

� 1

2
nE

@c

@y

� �
i; j�1=2;k

� nE

@c

@y

� �
i; jÿ1=2;k

" #
sk�hi; j�1=2 ÿ hi; jÿ1=2�dx:

�44�

There are corresponding expressions for Fkhd and Fehd.

The source terms for solute transport are simply speci®ed here at one or more cells as a

concentration or an in¯ow of solute. The source terms for k and e transport, Fks and Fes, both involve

the production term P (equations (6)±(8)). This is now written in full for completeness:

P � nE 2
@u

@x

� �2

� @v
@x
� @u
@y

� �
@v
@x
� @w

@x
� @u
@z

� �
@w

@x
� @u

@y
� @v
@x

� �
@u

@y
� 2

@v
@y

� �2
"

� @w

@y
� @v
@z

� �
@w

@y
� @u

@z
� @w
@x

� �
@u

@z
� @v

@z
� @w
@y

� �
@v
@z
� 2

@w

@z

� �2�
: �45�

The horizontal velocity gradients are calculated in real space and

@

@z
� 1

h

@

@s0
@s0

@s
:

We thus have

Fks
i; j;k�1=2 � dt�Pi; j;k�1=2 ÿ ei; j;k�1=2�;

Fes
i; j;k�1=2 � dt c1e

ei; j;k�1=2

ki; j;k�1=2

Pi; j;k�1=2 ÿ c2e

e2
i; j;k�1=2

ki; j;k�1=2

 !
�46�

and

Fc � c� Fca � Fchd � Fcs;

Fk � k � Fka � Fkhd � Fks;

Fe � e� Fea � Fehd � Fes:
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The numerical scheme is thus complete apart from consideration of boundary conditions, wetting and

drying and laminar=turbulent transition near a wet=dry boundary which are described below.

4. RESULTS

Although the aim is to produce a general solver for tidal and estuarial ¯ows, it is valuable to consider

®rst parallel oscillatory ¯ow to compare with existing solutions and ®eld data. In this context a

detailed study of the oscillatory bed boundary layer has been made by Justesen.12 This is usually

driven by periodic surface waves and is different from oscillatory tidal ¯ow in that the free surface is

effectively at in®nity with an outer boundary condition (z! 1 ) given by

1

r
@p

@x
� ÿ @u1

@t
; �47�

where u1 � uM sin�2pt=T� in this case; T is the ¯ow period and uM is the amplitude of u1 . The

rough turbulent boundary layer is considered which is de®ned only by A=ks, where A� uMT=2p is the

amplitude of particle motion (outside the boundary layer). Justesen presented detailed information for

A=ks� 1000, including contour plots of k=u2
M and l=ks on a (z=A)±(t=T) plane. l is a representative

turbulence length scale given by the formula for isotropic turbulence l � cmk3=2=e which has a simpler

physical interpretation than e. Contour plots of k=u2
M and l=ks from the general code developed here,

stripped down to 1D (in the vertical), are shown in Figures 6 and 7. These are very close to those

presented by Justesen and were obtained with the following numerical parameters: dt=T� 0�002, the

free surface 0�25A above the bed, 100 cells and a bed cell size of 0�23ks giving 28 cells across depth

presented in Figures 6 and 7. These results were insensitive to re®ning further the numerical

discretization (reducing the number of cells below 40 started to give a marked deviation). It is clearly

seen how k and l vary temporally and spatially, indicating that such a two-equation model is

necessary for oscillatory ¯ow predictions. Whether the eddy viscosity assumption is adequate can be

inferred from the predictions of velocity variation and bed shear stress. Justesen made a detailed

Figure 6. Contour plot of 10k=u2
M on (z=A)±(t=T) plane for wave-induced bed boundary layer with A=ks� 1000
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comparison with several experimental studies and concluded that the turbulence and ¯ow

characteristics were well predicted by this model, apart from the level of turbulence energy very

close to the bed (within one to two roughness heights). The bed shear stress is well predicted so by

implication the turbulence dissipation rate is also not well predicted in this narrow region. However,

the distinct differences between the acceleration and deceleration phases are captured and the

spreading of turbulence from the near-wall region with high production to the outer boundary layer is

fully accounted for. This is of course important for the accurate prediction of mixing processes.

Although the good prediction of bed shear stress is in fact not a severe test since simpler theories

provide similar predictions, the overall predictions by the two-equation model represent a

considerable improvement.

We are fortunate in having some ®eld data available and comparisons are made following Baumert

and Radach.15 Figures 8 and 9 compare time variations of velocity and turbulence kinetic energy

from the Elbe estuary. The water depth was 5�1 m, the tidal period was 12 h 25 min, the roughness

height was 0�02 m and the measurements were made at a level of about 1�9 m from the bed. The

driving pressure gradient was estimated to be given by

ÿ 1

r
@p

@x
� gSM cos

2pt

T

� �
; �48�

where SM is a maximum surface slope of 56 10±5 in this case. Results were obtained with 4000 time

steps per period, 100 cells and a bed cell size of 0�032 m (a� 0�196 in equation (28)) and agreement

with ®eld data for u and k is seen to be satisfactory.

Time variations of velocity and bed shear stress for the Jade estuary are shown in Figures 10 and

11. Here the water depth is rather greater at about 20 m, the roughness height is smaller at 0�002 m

and SM is estimated to be 26 10±5. The measurements were made at a distance of 2�14 m from the

bed. The computed results were obtained with 100 cells, a bed cell size of 0�005 m (a� 0�002) and

20,000 time steps per period. The agreement of velocity with experiment is reasonable but the

computed bed shear stress gives an upper bound to the measurements and is slightly greater than the

Figure 7. Contour plot of l=ks on (z=A)±(t=T) plane for wave-induced bed boundary layer with A=ks� 1000
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values computed by Baumert and Radach. They, however, used a regular mesh with 50 cells and to

demonstrate mesh independence the results here were recomputed with a bed cell size of 0�018 m

(a� 0�01). The results were virtually identical. All results presented are independent of further

re®nement of numerical parameters. Interestingly the maximum Re�0 � u�dz0=n where dz0 is the bed

cell size, was 113 for the former and 409 for the latter. Strictly the wall functions are only valid for

Re*< 100 but this limit would appear not to be too signi®cant for these ¯ows. Finally the time steps

used here to produce stable results were very much smaller than those of Baumert and Radach,

probably because of the very much smaller cell size at the bed in these computations.

To demonstrate the in¯uence of water depth for the three cases, the variations of bed shear stress

with time are shown in Figure 12. The effect of water depth on phase from the shallow Elbe case to

the deeper Jade case and then to the effectively in®nite-depth bed boundary layer case is most

marked. This is further emphasized by the contour plots of k and l for the Elbe, shown in Figures 13

and 14, and the Jade, shown in Figures 15 and 16. For the shallow Elbe the length scale is fairly

constant with time, except when the bed shear stress is near zero. For the deeper Jade case there is

Figure 8. Variation of velocity u (m s±1) at 1�9 m above bed with time for Elbe estuary: ÐÐÐÐ, computed; u, measured

Figure 9. Variation of turbulent kinetic energy 100k (m2 s±2) at 1�9 m above bed with time for Elbe estuary: ÐÐÐÐ,
computed; u, measured
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more variation and in both cases the k contours have a similar shape relative to the time of zero bed

shear stress. Both k and l are quite different from the in®nite-depth case shown in Figures 6 and 7.

Clearly the in¯uence of water depth on k and l and hence eddy viscosity is complex and further

demonstrates the desirability of a two-equation turbulence model for computing general ¯ow

situations and mixing processes.

These 1D runs were made on a 486 PC requiring a few minutes at most and are a very convenient

way of establishing numerical parameters needed for stability and accuracy of vertical processes prior

to time-consuming 3D computations. The 1D cases often provide the limiting criteria when

transferred to general 3D problems.

To demonstrate 3D ¯ow prediction, computations of ¯ow around a conical island with gently

sloping sides are made and compared with the laboratory experiments.2 Results are available for

steady ambient current ¯ow at present. The experimental con®guration is shown in Figure 17. The

®rst test is made with an island side slope y� 22� where some laser Doppler anemometer (LDA)

velocity measurements are available. This test case was also used by Stansby and Lloyd9 where the

numerical model incorporated Lagrangian advection and a simple two-layer mixing length turbulence

model. The scheme of Stansby and Lloyd for wetting and drying is used again here with a cut-off

Figure 10. Variation of velocity u (m s±1) at 2�14 m above bed with time for Jade estuary: ÐÐÐÐ, computed; u, measured

Figure 11. Variation of bed shear stress t0 (N m±2) with time for Jade estuary: ÐÐÐÐ, computed; u, measured
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depth of dx tan y below which a cell is said to be dry. Close to a wet=dry boundary we also allow

transition to laminar ¯ow as the boundary is approached. For Reh� umh=n> 1000 the ¯ow is said to

be fully turbulent and for Reh< 500 (values typical of steady channel ¯ows) fully laminar, with eddy

viscosity and turbulence characteristics taking a linearly weighted average of the turbulent value and

the laminar value between these limits. This is obviously rather idealized physically but it affects a

small area close to the boundary and is desirable for numerical stability. The initial conditions are

those of still water and the inlet velocity is increased as a quarter sinusoid (with a period of 20 or 40 s

in the computations below) up to the required onset velocity. The turbulence characteristics for steady

channel ¯ow are also set at the inlet, based on mean inlet velocity. At the outlet the velocities and

scalar quantities are given zero normal gradients. This condition is suf®ciently far downstream to

have negligible effect on the results presented.9 The side walls of the ¯ume are treated as slip

boundaries. In the experiment the boundary layer is smooth turbulent and the roughness height in the

Figure 12. Variation of bed shear stress t0=r (m2 s±2) with time for wave-induced bed boundary layer, Elbe estuary and Jade
estuary

Figure 13. Contour plot of 100k (m2 s±2) on z±(t=T) plane for Elbe estuary
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model is adjusted to give the same bed shear stress in the ambient ¯ow (ks� 0�00022 m). Variations

of u- and v-velocity with time are shown in Figure 18 for the two horizontal positions shown in Figure

17, one some distance away from the wake centreline and one close to the wake centreline (Figures

18(a) and 18(b) respectively). The vertical measurement position is just below the surface.

A 1636 516 20 mesh was used with 0�0304 m horizontal mesh size (dx� dy) and a vertical

Figure 14. Contour plot of l (m) on z±(t=T) plane for Elbe estuary

Figure 15. Contour plot of 100k (m2 s±2) on z±(t=T) plane for Jade estuary
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mesh spacing at the bed of 0�0004 m (a� 0�001) in the ambient ¯ow where the mean velocity is

0�088 m s±1 and the depth is 0�08 m. A time step dt of 0�01 s was used. The wake became

asymmetric and produced vortex shedding without any imposed asymmetry. At the position away

from the wake centreline the mean and ¯uctuating u-velocity components are in reasonable

agreement with experiment, although the dominant frequency is about 15% higher. There are no

corresponding LDA measurements of the v-velocity. This computation was repeated on an

816 256 20 mesh with a horizontal mesh size of 0�0608 m and the same vertical mesh. The

corresponding velocity time variations are shown in Figure 19 to be similar, although the dominant

frequency is now only 10% higher than the LDA measurements and the magnitude of the v-velocity

¯uctuations is almost halved for both positions, indicating less vigorous vortex shedding.

Comparisons of solute transport computations with experimental dye visualization were made with

the 8� slope island. Comparisons are qualitative and cases with two stability parameters (S�CfD=h)

of 0�06 and 0�35 with vigorous and weak eddy shedding respectively are shown in Figures 20 and 21.

Cf is the coef®cient of friction and D is the island diameter at mid-depth.2 The point in the vortex-

shedding cycle was chosen to be equivalent to that shown for the dye visualization. The more re®ned

Figure 16. Contour plot of l (m) on z±(t=T) plane for Jade estuary

Figure 17. Sketch of ¯ume and island con®guration (with 22� side slope)
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1636 516 20 mesh was used and it can be seen how at least the gross wake structures are captured

in both cases. The solute was input in one cell at mid-depth just downstream of the island. Computed

contours at the surface, mid-depth and the bed are shown in Figures 20 and 21. Those at mid-depth

and the surface are very similar and also at the bed for S� 0�35 indicating the two-dimensionality of

the wake.

Figure 18. Variations of u- and v-velocity (m s±1) with time for positions shown in Figure 17 for island with 22� side slope. The
spiky plot (indicating turbulence) shows the LDA measurement. The computational mesh size is 1636 516 20. (a) At
x� 1�62 m, y� 0�45 m, computed and LDA. (b) At x� 1�62 m, y� 0�73 m, computed. (c) At x� 1�62 m, y� 0�73 m, u-

component only, computed and LDA

306 P. K. STANSBY

INT. J. NUMER. METH. FLUIDS, VOL 25: 285±313 (1997) # 1997 by John Wiley & Sons, Ltd.



Finally the con®guration with S� 0�06 is used to demonstrate the in¯uence of temperature on the

input solute. The ambient temperature is set at 15�C and the input again in one cell is now upstream

of the island, slightly offset from the centreline, at mid-depth. The same initial ¯ow conditions are

used in all cases and the in¯uence of the plume on the ¯ow is very small, as inferred from velocity

time histories. Again no ¯ow asymmetry was imposed. Temperature contours with a solute input

temperature of 16�C (almost neutrally buoyant) are shown in Figure 22. The contour magnitudes

show the temperature difference from ambient. In all cases so far linear upwind interpolation

(second-order-accurate) has been used. The same case is shown with a third-order-accurate ¯ux-

limited upwind scheme17±19 in Figure 23 and the contours are very similar though not identical. This

aspect will be pursued further elsewhere particularly in relation to suspended sediment transport and

Figure 23 is included here to demonstrate the insensitivity of solute transport to a higher-order

scheme.

The case with a solute input temperature of 30�C is shown in Figure 24 (with linear upwind

interpolation). The hotter solute tends to move upwards in general as would be expected. However,

the situation is clearly complex and this result is only for one instant in time. A detailed investigation

with experimental measurements is desirable.

Figure 19. As Figure 18 with computational mesh size of 816 256 20. Computed velocities only. (a) At x� 1�62 m,
y� 0�45 m. (b) At x� 1�62 m, y� 0�73 m
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Figure 20. Computed concentration contours at surface, mid-depth and bed at t� 150 s and experimental dye visualization for
8� slope island with mean ambient velocity of 0�115 m s±1 and depth of 0�045 m (giving a stability parameter S� 0�06)
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Figure 21. Computed concentration contours at surface, mid-depth and bed at t� 150 s and experimental dye visualization for
8� slope island with mean ambient velocity of 0�1 m s±1 and depth of 0�016 m (giving a stability parameter S� 0�35)
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5. DISCUSSION AND CONCLUSIONS

A conservative ®nite volume scheme for 3D shallow-water ¯ow with k±e turbulence modelling and

non-neutrally buoyant solute dispersion has been presented. The k±e model may be considered the

minimum level of turbulence model required for oscillatory ¯ows, although simple mixing length

models give good predictions of bed shear stress. 1D vertical computations for parallel oscillatory

tidal ¯ows show good (though limited) predictions of ®eld measurements of velocity, bed shear stress

and turbulence energy k. However, solute dispersion is likely to be more sensitive to turbulence

quantities and this remains to be assessed. The difference in turbulence characteristics between the

depths of 5 m (in the Elbe estuary) and 20 m (in the Jade estuary) is quite marked.

Figure 22. Computed contours of temperature difference (local minus ambient) at surface, mid-depth and bed for 8� slope
island with mean ambient velocity of 0�115 m s±1 and depth of 0�045 m (giving a stability parameter S� 0�06). The
temperature of solute input is 16�C and the ambient temperature is 15�C. The contours have a 0�05�C temperature spacing
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The conservative scheme is particularly desirable for scalar transport and is preferred to the non-

conservative Lagrangian scheme used previously by the author.9 This entails the use of upwind

interpolation for advection and the linear approximation giving second-order accuracy has shown

good stability characteristics in the study of ¯ow around an island of small side slope with vortex

shedding, which may be considered a severe test. Limited tests with a third-order-accurate ¯ux-

limited scheme (for momentum as well as scalar quantities) were less robust and were not pursued

further. The use of this higher-order scheme for solute transport, however, gave very similar results

for the one case investigated.

A widely recognized consequence of using k±e modelling is the need for a smaller time step than

for algebraic mixing length models. Here a time step of about one-®th of that required with a mixing

length model with Lagrangian advection9 was required for the island study. However, reasonable

agreement with experiment was obtained here with a larger (horizontal) mesh size.

Figure 23. As Figure 22 with Van Leer's third-order ¯ux-limited upwind interpolation scheme for solute advection
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The computations were made on a Dec Alpha 600 workstation and one time step for the

1636 516 20 mesh required about 9 s computing time. Large-scale 3D computations are thus a

practical proposition on such a modern workstation.

In such a scheme the computational effort in solving for surface elevation in a fully coupled way

by a conjugate gradient solver is a very small proportion of the time step. Most effort goes into

generating the matrix components of the wet cells before solution and then computing desired

quantities after solution. For many cases there would thus appear to be little advantage in boundary-

®tted meshes for 3D ¯ows since dry cells represent little overhead, probably less than that associated

with the additional algebra for a non-rectangular mesh. However, for coastal problems extending

from deep water to con®ned estuaries a variable mesh size could be an advantage and should be a

subject for further effort.

Figure 24. As Figure 22 (with linear upwind interpolation). The temperature of solute input is 30�C and the ambient
temperature is 15�C. The contours have a 1�C temperature spacing
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The uncertainty in the prediction of solute dispersion in oscillatory ¯ow with k±e modelling has

been mentioned. Comparisons with controlled experiments would be highly desirable and also with

full Reynolds stress transport modelling. For the case of vortex shedding from an island, aspects

associated with non-hydrostatic pressure are worthy of computational investigation as discussed by

Lloyd and Stansby.2 The combination of recirculating ¯ows around islands and headlands within tidal

oscillations remains an important validation exercise to be undertaken. Finally the in¯uence of solute

temperature or density on turbulence structures is poorly understood and has been ignored here. The

limited results presented indicate the complexity of the phenomena in recirculating ¯ows.
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